Presse
“Genschere” bekämpft humane Viren
Die Vermehrung von potenziell schädlichen Adenoviren kann in menschlichen Zellen in Zellkultur durch den Einsatz des sogenannten CRISPR-Cas9-Systems („Genschere“) deutlich vermindert werden. Damit bietet diese weltweit in Wissenschaft & Forschung eingesetzte Methode auch ein Potenzial für zukünftige innovative Therapien zur Behandlung von Viruserkrankungen. Grundlage dieser Erkenntnis ist eine jetzt im renommierten Fachjournal „Molecular Therapy Nucleic Acids“ veröffentlichte Studie der IMC Fachhochschule Krems (IMC Krems) in Österreich. Gefördert wurde die Studie vom Österreichischen Wissenschaftsfonds FWF.
Viruserkrankungen wirklich an der Wurzel zu packen bleibt eine große Herausforderung. Zwar gibt es vereinzelt Medikamente, die die Virusvermehrung in menschlichen Zellen unterbinden, doch sind diese noch eine große Ausnahme. Vor diesem Hintergrund untersuchten nun Mitarbeiterinnen und Mitarbeiter der Forschungsgruppe um Prof. Reinhard Klein vom Department of Life Sciences des IMC Krems das Potenzial molekularer Technologien zur Hemmung von Virusinfektionen. Die Forschergruppe nutzte eine wissenschaftlich etablierte Methode (CRISPR-Cas9) zur gezielten Veränderung von DNA, um die Vermehrung von Adenoviren in menschlichen Zelllinien in Zellkultur signifikant zu vermindern.
Zielkoordinate: Virus-DNA
Diese vor wenigen Jahren mit dem Nobelpreis gekürte Methode erlaubt es, ganz bestimmte DNA-Abschnitte in Säugetierzellen gezielt zu verändern. „Unsere Überlegung war es nun“, erläutert Prof. Klein, „das Potenzial diese Technik zur Bekämpfung von Virusinfektionen wie zum Beispiel Infektionen mit Adenoviren, die häufig Erkrankungen der Atemwege, des Verdauungstrakts und der Augen verursachen, auszuloten.“ Das Ziel dabei: in infizierten menschlichen Zelllinien eine Region der Adenoviren-DNA so zu zerstören, dass sich die Viren nicht mehr vermehren können.
Ein Ansatz, der überraschend erfolgreich war, wie Prof. Klein darlegt: „Tatsächlich gelang es uns, die Menge an infektiösen Viruspartikeln in den menschlichen Zelllinien unter bestimmten Bedingungen, um bis zu drei Größenordnungen zu reduzieren. Ein Resultat, das die Effizienz der Methode klar bestätigt und darüber hinaus demonstriert, dass diese Technologie auch potent genug ist, es mit der großen Anzahl an Viren, die in infizierten Zellen im Zuge mancher Virusinfektionen produziert werden, aufnehmen zu können.“
Entscheidend für diesen Erfolg war dabei die Kombination mehrerer Maßnahmen. Die erste war dabei die Auswahl jener viralen DNA-Sequenz, an die das CRISPR-Cas9-System ansetzen sollte. Hier wählte das Team um Prof. Klein die E1A-Region des Virus, die ganz am Anfang des Virusvermehrungszyklus von besonderer Wichtigkeit ist. Dazu Prof. Klein: „Dadurch, dass wir die Virusvermehrung quasi im Keim erstickten, gelang es uns, die Menge an viraler DNA in den Zellen so gering zu halten, dass das CRISPR-Cas9-System überhaupt effizient arbeiten konnte.“ Tatsächlich bereitete dem Team am Beginn der Studie die mögliche Menge an viraler DNA in den Zellen durchaus Sorge. Denn diese könnte bei schneller Vermehrung der Viren so groß werden, dass das CRISPR-Cas9-System ganz einfach an den Rand seiner Leistungsfähigkeit kommen würde. Doch die Inaktivierung von E1A, das in infizierten Zellen für den enormen Anstieg der Menge an viraler DNA verantwortlich ist, verhinderte genau dies.
Erfolg durch Kombination
Eine zweite Maßnahme, die zur starken Hemmung der Virusvermehrung beitrug, war der Einsatz von Kombinationen sogenannter guide RNAs – Nukleinsäure-Stränge, die das Ansteuern der DNA-Zielsequenz ermöglichen. Das führte zu einer effizienteren Ausschaltung des Adenovirus E1A-Gens und damit zu einer höheren Wahrscheinlichkeit, dass das Virus nicht mehr in der Lage ist, sich zu vermehren.
Die Hemmung der Virusvermehrung konnte weiters durch eine Kombination mit dem Wirkstoff Cidofovir, der die virale DNA-Synthese behindert, verstärkt werden. Dieser Effekt war auch vorhanden, wenn nur geringe Mengen der Substanz zur Anwendung kamen. Der Verstärkungseffekt kommt dadurch zustande, dass die Vermehrung der viralen DNA auf zwei unterschiedlichen Ebenen gehemmt wird: Zunächst wird die Menge an funktionsfähigem E1A-Produkt durch CRISPR-Cas9 in der Zelle vermindert während in einem zweiten Schritt die restliche, noch stattfindende Vermehrung der viralen DNA durch Cidofovir gehemmt wird.
Die Ergebnisse der international beachteten Studie des IMC Krems unterstreichen die ganz allgemeine Potenz von CRISPR-Cas9 und die Möglichkeit der Verwendung der Technologie auch zur Inaktivierung von Viren. Eine prinzipielle, zukünftige, Anwendung gegen Viruserkrankungen ist damit theoretisch denkbar geworden. Soll diese Technologie in Zukunft tatsächlich zur Therapie von Viruserkrankungen angewendet werden, müssen dazu zunächst aber noch zahlreiche weitere Fragen geklärt und technische Hürden aus dem Weg geräumt werden, wie Prof. Klein betont. Eine Anwendung ist somit momentan noch in weiter Ferne, aber die theoretische Möglichkeit dazu konnte aufgezeigt werden.